Index: src/search/pdbs/pattern_generation_haslum.cc |
=================================================================== |
--- a/src/search/pdbs/pattern_generation_haslum.cc |
+++ b/src/search/pdbs/pattern_generation_haslum.cc |
@@ -66,9 +66,9 @@ |
void PatternGenerationHaslum::sample_states(vector<State> &samples, double average_operator_cost) { |
current_heuristic->evaluate(*g_initial_state); |
- assert(!current_heuristic->is_dead_end()); |
+ assert(!current_heuristic->is_dead_end(g_initial_state->get_id())); |
- int h = current_heuristic->get_heuristic(); |
+ int h = current_heuristic->get_heuristic(g_initial_state->get_id()); |
int n; |
if (h == 0) { |
n = 10; |
@@ -108,7 +108,7 @@ |
current_state = State(current_state, *applicable_ops[random]); |
// if current state is dead-end, then restart with initial state |
current_heuristic->evaluate(current_state); |
- if (current_heuristic->is_dead_end()) |
+ if (current_heuristic->is_dead_end(current_state.get_id())) |
current_state = *g_initial_state; |
} |
} |
@@ -120,20 +120,20 @@ |
bool PatternGenerationHaslum::is_heuristic_improved(PDBHeuristic *pdb_heuristic, |
const State &sample) { |
pdb_heuristic->evaluate(sample); |
- if (pdb_heuristic->is_dead_end()) { |
+ if (pdb_heuristic->is_dead_end(sample.get_id())) { |
return true; |
} |
- int h_pattern = pdb_heuristic->get_heuristic(); // h-value of the new pattern |
+ int h_pattern = pdb_heuristic->get_heuristic(sample.get_id()); // h-value of the new pattern |
vector<vector<PDBHeuristic *> > max_additive_subsets; |
current_heuristic->get_max_additive_subsets(pdb_heuristic->get_pattern(), max_additive_subsets); |
current_heuristic->evaluate(sample); |
- int h_collection = current_heuristic->get_heuristic(); // h-value of the current collection heuristic |
+ int h_collection = current_heuristic->get_heuristic(sample.get_id()); // h-value of the current collection heuristic |
for (size_t k = 0; k < max_additive_subsets.size(); ++k) { // for each max additive subset... |
int h_subset = 0; |
for (size_t l = 0; l < max_additive_subsets[k].size(); ++l) { // ...calculate its h-value |
max_additive_subsets[k][l]->evaluate(sample); |
- assert(!max_additive_subsets[k][l]->is_dead_end()); |
- h_subset += max_additive_subsets[k][l]->get_heuristic(); |
+ assert(!max_additive_subsets[k][l]->is_dead_end(sample.get_id())); |
+ h_subset += max_additive_subsets[k][l]->get_heuristic(sample.get_id()); |
} |
if (h_pattern + h_subset > h_collection) { |
// return true if one max additive subest is found for which the condition is met |
@@ -160,11 +160,11 @@ |
cout << "current collection size is " << current_heuristic->get_size() << endl; |
current_heuristic->evaluate(*g_initial_state); |
cout << "current initial h value: "; |
- if (current_heuristic->is_dead_end()) { |
+ if (current_heuristic->is_dead_end(g_initial_state->get_id())) { |
cout << "infinite => stopping hill-climbing" << endl; |
break; |
} else { |
- cout << current_heuristic->get_heuristic() << endl; |
+ cout << current_heuristic->get_heuristic(g_initial_state->get_id()) << endl; |
} |
vector<State> samples; |
@@ -276,7 +276,7 @@ |
opts.set<vector<vector<int> > >("patterns", initial_pattern_collection); |
current_heuristic = new CanonicalPDBsHeuristic(opts); |
current_heuristic->evaluate(*g_initial_state); |
- if (current_heuristic->is_dead_end()) |
+ if (current_heuristic->is_dead_end(g_initial_state->get_id())) |
return; |
// initial candidate patterns, computed separately for each pattern from the initial collection |