OLD | NEW |
| (Empty) |
1 // Copyright 2011 The Go Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style | |
3 // license that can be found in the LICENSE file. | |
4 | |
5 // CPU profiling. | |
6 // Based on algorithms and data structures used in | |
7 // http://code.google.com/p/google-perftools/. | |
8 // | |
9 // The main difference between this code and the google-perftools | |
10 // code is that this code is written to allow copying the profile data | |
11 // to an arbitrary io.Writer, while the google-perftools code always | |
12 // writes to an operating system file. | |
13 // | |
14 // The signal handler for the profiling clock tick adds a new stack trace | |
15 // to a hash table tracking counts for recent traces. Most clock ticks | |
16 // hit in the cache. In the event of a cache miss, an entry must be· | |
17 // evicted from the hash table, copied to a log that will eventually be | |
18 // written as profile data. The google-perftools code flushed the | |
19 // log itself during the signal handler. This code cannot do that, because | |
20 // the io.Writer might block or need system calls or locks that are not | |
21 // safe to use from within the signal handler. Instead, we split the log | |
22 // into two halves and let the signal handler fill one half while a goroutine | |
23 // is writing out the other half. When the signal handler fills its half, it | |
24 // offers to swap with the goroutine. If the writer is not done with its half, | |
25 // we lose the stack trace for this clock tick (and record that loss). | |
26 // The goroutine interacts with the signal handler by calling getprofile() to | |
27 // get the next log piece to write, implicitly handing back the last log | |
28 // piece it obtained. | |
29 // | |
30 // The state of this dance between the signal handler and the goroutine | |
31 // is encoded in the Profile.handoff field. If handoff == 0, then the goroutine | |
32 // is not using either log half and is waiting (or will soon be waiting) for | |
33 // a new piece by calling notesleep(&p->wait). If the signal handler | |
34 // changes handoff from 0 to non-zero, it must call notewakeup(&p->wait) | |
35 // to wake the goroutine. The value indicates the number of entries in the | |
36 // log half being handed off. The goroutine leaves the non-zero value in | |
37 // place until it has finished processing the log half and then flips the number | |
38 // back to zero. Setting the high bit in handoff means that the profiling is ov
er,· | |
39 // and the goroutine is now in charge of flushing the data left in the hash tabl
e | |
40 // to the log and returning that data.·· | |
41 // | |
42 // The handoff field is manipulated using atomic operations. | |
43 // For the most part, the manipulation of handoff is orderly: if handoff == 0 | |
44 // then the signal handler owns it and can change it to non-zero.·· | |
45 // If handoff != 0 then the goroutine owns it and can change it to zero. | |
46 // If that were the end of the story then we would not need to manipulate | |
47 // handoff using atomic operations. The operations are needed, however, | |
48 // in order to let the log closer set the high bit to indicate "EOF" safely | |
49 // in the situation when normally the goroutine "owns" handoff. | |
50 | |
51 package runtime | |
52 #include "runtime.h" | |
53 #include "arch_GOARCH.h" | |
54 #include "malloc.h" | |
55 | |
56 enum | |
57 { | |
58 HashSize = 1<<10, | |
59 LogSize = 1<<17, | |
60 Assoc = 4, | |
61 MaxStack = 64, | |
62 }; | |
63 | |
64 typedef struct Profile Profile; | |
65 typedef struct Bucket Bucket; | |
66 typedef struct Entry Entry; | |
67 | |
68 struct Entry { | |
69 uintptr count; | |
70 uintptr depth; | |
71 uintptr stack[MaxStack]; | |
72 }; | |
73 | |
74 struct Bucket { | |
75 Entry entry[Assoc]; | |
76 }; | |
77 | |
78 struct Profile { | |
79 bool on; // profiling is on | |
80 Note wait; // goroutine waits here | |
81 uintptr count; // tick count | |
82 uintptr evicts; // eviction count | |
83 uintptr lost; // lost ticks that need to be logged | |
84 | |
85 // Active recent stack traces. | |
86 Bucket hash[HashSize]; | |
87 | |
88 // Log of traces evicted from hash. | |
89 // Signal handler has filled log[toggle][:nlog]. | |
90 // Goroutine is writing log[1-toggle][:handoff]. | |
91 uintptr log[2][LogSize/2]; | |
92 uintptr nlog; | |
93 int32 toggle; | |
94 uint32 handoff; | |
95 ········ | |
96 // Writer state. | |
97 // Writer maintains its own toggle to avoid races | |
98 // looking at signal handler's toggle. | |
99 uint32 wtoggle; | |
100 bool wholding; // holding & need to release a log half | |
101 bool flushing; // flushing hash table - profile is over | |
102 bool eod_sent; // special end-of-data record sent; => flushing | |
103 }; | |
104 | |
105 static Lock lk; | |
106 static Profile *prof; | |
107 | |
108 static void tick(uintptr*, int32); | |
109 static void add(Profile*, uintptr*, int32); | |
110 static bool evict(Profile*, Entry*); | |
111 static bool flushlog(Profile*); | |
112 | |
113 static uintptr eod[3] = {0, 1, 0}; | |
114 | |
115 // LostProfileData is a no-op function used in profiles | |
116 // to mark the number of profiling stack traces that were | |
117 // discarded due to slow data writers. | |
118 static void | |
119 LostProfileData(void) | |
120 { | |
121 } | |
122 | |
123 // SetCPUProfileRate sets the CPU profiling rate. | |
124 // The user documentation is in debug.go. | |
125 void | |
126 runtime·SetCPUProfileRate(intgo hz) | |
127 { | |
128 uintptr *p; | |
129 uintptr n; | |
130 | |
131 // Clamp hz to something reasonable. | |
132 if(hz < 0) | |
133 hz = 0; | |
134 if(hz > 1000000) | |
135 hz = 1000000; | |
136 | |
137 runtime·lock(&lk); | |
138 if(hz > 0) { | |
139 if(prof == nil) { | |
140 prof = runtime·SysAlloc(sizeof *prof, &mstats.other_sys)
; | |
141 if(prof == nil) { | |
142 runtime·printf("runtime: cpu profiling cannot al
locate memory\n"); | |
143 runtime·unlock(&lk); | |
144 return; | |
145 } | |
146 } | |
147 if(prof->on || prof->handoff != 0) { | |
148 runtime·printf("runtime: cannot set cpu profile rate unt
il previous profile has finished.\n"); | |
149 runtime·unlock(&lk); | |
150 return; | |
151 } | |
152 | |
153 prof->on = true; | |
154 p = prof->log[0]; | |
155 // pprof binary header format. | |
156 // http://code.google.com/p/google-perftools/source/browse/trunk
/src/profiledata.cc#117 | |
157 *p++ = 0; // count for header | |
158 *p++ = 3; // depth for header | |
159 *p++ = 0; // version number | |
160 *p++ = 1000000 / hz; // period (microseconds) | |
161 *p++ = 0; | |
162 prof->nlog = p - prof->log[0]; | |
163 prof->toggle = 0; | |
164 prof->wholding = false; | |
165 prof->wtoggle = 0; | |
166 prof->flushing = false; | |
167 prof->eod_sent = false; | |
168 runtime·noteclear(&prof->wait); | |
169 | |
170 runtime·setcpuprofilerate(tick, hz); | |
171 } else if(prof != nil && prof->on) { | |
172 runtime·setcpuprofilerate(nil, 0); | |
173 prof->on = false; | |
174 | |
175 // Now add is not running anymore, and getprofile owns the entir
e log. | |
176 // Set the high bit in prof->handoff to tell getprofile. | |
177 for(;;) { | |
178 n = prof->handoff; | |
179 if(n&0x80000000) | |
180 runtime·printf("runtime: setcpuprofile(off) twic
e"); | |
181 if(runtime·cas(&prof->handoff, n, n|0x80000000)) | |
182 break; | |
183 } | |
184 if(n == 0) { | |
185 // we did the transition from 0 -> nonzero so we wake ge
tprofile | |
186 runtime·notewakeup(&prof->wait); | |
187 } | |
188 } | |
189 runtime·unlock(&lk); | |
190 } | |
191 | |
192 static void | |
193 tick(uintptr *pc, int32 n) | |
194 { | |
195 add(prof, pc, n); | |
196 } | |
197 | |
198 // add adds the stack trace to the profile. | |
199 // It is called from signal handlers and other limited environments | |
200 // and cannot allocate memory or acquire locks that might be | |
201 // held at the time of the signal, nor can it use substantial amounts | |
202 // of stack. It is allowed to call evict. | |
203 static void | |
204 add(Profile *p, uintptr *pc, int32 n) | |
205 { | |
206 int32 i, j; | |
207 uintptr h, x; | |
208 Bucket *b; | |
209 Entry *e; | |
210 | |
211 if(n > MaxStack) | |
212 n = MaxStack; | |
213 ········ | |
214 // Compute hash. | |
215 h = 0; | |
216 for(i=0; i<n; i++) { | |
217 h = h<<8 | (h>>(8*(sizeof(h)-1))); | |
218 x = pc[i]; | |
219 h += x*31 + x*7 + x*3; | |
220 } | |
221 p->count++; | |
222 | |
223 // Add to entry count if already present in table. | |
224 b = &p->hash[h%HashSize]; | |
225 for(i=0; i<Assoc; i++) { | |
226 e = &b->entry[i]; | |
227 if(e->depth != n)······· | |
228 continue; | |
229 for(j=0; j<n; j++) | |
230 if(e->stack[j] != pc[j]) | |
231 goto ContinueAssoc; | |
232 e->count++; | |
233 return; | |
234 ContinueAssoc:; | |
235 } | |
236 | |
237 // Evict entry with smallest count. | |
238 e = &b->entry[0]; | |
239 for(i=1; i<Assoc; i++) | |
240 if(b->entry[i].count < e->count) | |
241 e = &b->entry[i]; | |
242 if(e->count > 0) { | |
243 if(!evict(p, e)) { | |
244 // Could not evict entry. Record lost stack. | |
245 p->lost++; | |
246 return; | |
247 } | |
248 p->evicts++; | |
249 } | |
250 ········ | |
251 // Reuse the newly evicted entry. | |
252 e->depth = n; | |
253 e->count = 1; | |
254 for(i=0; i<n; i++) | |
255 e->stack[i] = pc[i]; | |
256 } | |
257 | |
258 // evict copies the given entry's data into the log, so that | |
259 // the entry can be reused. evict is called from add, which | |
260 // is called from the profiling signal handler, so it must not | |
261 // allocate memory or block. It is safe to call flushLog. | |
262 // evict returns true if the entry was copied to the log, | |
263 // false if there was no room available. | |
264 static bool | |
265 evict(Profile *p, Entry *e) | |
266 { | |
267 int32 i, d, nslot; | |
268 uintptr *log, *q; | |
269 ········ | |
270 d = e->depth; | |
271 nslot = d+2; | |
272 log = p->log[p->toggle]; | |
273 if(p->nlog+nslot > nelem(p->log[0])) { | |
274 if(!flushlog(p)) | |
275 return false; | |
276 log = p->log[p->toggle]; | |
277 } | |
278 ········ | |
279 q = log+p->nlog; | |
280 *q++ = e->count; | |
281 *q++ = d; | |
282 for(i=0; i<d; i++) | |
283 *q++ = e->stack[i]; | |
284 p->nlog = q - log; | |
285 e->count = 0; | |
286 return true; | |
287 } | |
288 | |
289 // flushlog tries to flush the current log and switch to the other one. | |
290 // flushlog is called from evict, called from add, called from the signal handle
r, | |
291 // so it cannot allocate memory or block. It can try to swap logs with | |
292 // the writing goroutine, as explained in the comment at the top of this file. | |
293 static bool | |
294 flushlog(Profile *p) | |
295 { | |
296 uintptr *log, *q; | |
297 | |
298 if(!runtime·cas(&p->handoff, 0, p->nlog)) | |
299 return false; | |
300 runtime·notewakeup(&p->wait); | |
301 | |
302 p->toggle = 1 - p->toggle; | |
303 log = p->log[p->toggle]; | |
304 q = log; | |
305 if(p->lost > 0) { | |
306 *q++ = p->lost; | |
307 *q++ = 1; | |
308 *q++ = (uintptr)LostProfileData; | |
309 p->lost = 0; | |
310 } | |
311 p->nlog = q - log; | |
312 return true; | |
313 } | |
314 | |
315 // getprofile blocks until the next block of profiling data is available | |
316 // and returns it as a []byte. It is called from the writing goroutine. | |
317 Slice | |
318 getprofile(Profile *p) | |
319 { | |
320 uint32 i, j, n; | |
321 Slice ret; | |
322 Bucket *b; | |
323 Entry *e; | |
324 | |
325 ret.array = nil; | |
326 ret.len = 0; | |
327 ret.cap = 0; | |
328 ········ | |
329 if(p == nil)···· | |
330 return ret; | |
331 | |
332 if(p->wholding) { | |
333 // Release previous log to signal handling side. | |
334 // Loop because we are racing against SetCPUProfileRate(0). | |
335 for(;;) { | |
336 n = p->handoff; | |
337 if(n == 0) { | |
338 runtime·printf("runtime: phase error during cpu
profile handoff\n"); | |
339 return ret; | |
340 } | |
341 if(n & 0x80000000) { | |
342 p->wtoggle = 1 - p->wtoggle; | |
343 p->wholding = false; | |
344 p->flushing = true; | |
345 goto flush; | |
346 } | |
347 if(runtime·cas(&p->handoff, n, 0)) | |
348 break; | |
349 } | |
350 p->wtoggle = 1 - p->wtoggle; | |
351 p->wholding = false; | |
352 } | |
353 ········ | |
354 if(p->flushing) | |
355 goto flush; | |
356 ········ | |
357 if(!p->on && p->handoff == 0) | |
358 return ret; | |
359 | |
360 // Wait for new log. | |
361 runtime·notetsleepg(&p->wait, -1); | |
362 runtime·noteclear(&p->wait); | |
363 | |
364 n = p->handoff; | |
365 if(n == 0) { | |
366 runtime·printf("runtime: phase error during cpu profile wait\n")
; | |
367 return ret; | |
368 } | |
369 if(n == 0x80000000) { | |
370 p->flushing = true; | |
371 goto flush; | |
372 } | |
373 n &= ~0x80000000; | |
374 | |
375 // Return new log to caller. | |
376 p->wholding = true; | |
377 | |
378 ret.array = (byte*)p->log[p->wtoggle]; | |
379 ret.len = n*sizeof(uintptr); | |
380 ret.cap = ret.len; | |
381 return ret; | |
382 | |
383 flush: | |
384 // In flush mode. | |
385 // Add is no longer being called. We own the log. | |
386 // Also, p->handoff is non-zero, so flushlog will return false. | |
387 // Evict the hash table into the log and return it. | |
388 for(i=0; i<HashSize; i++) { | |
389 b = &p->hash[i]; | |
390 for(j=0; j<Assoc; j++) { | |
391 e = &b->entry[j]; | |
392 if(e->count > 0 && !evict(p, e)) { | |
393 // Filled the log. Stop the loop and return wha
t we've got. | |
394 goto breakflush; | |
395 } | |
396 } | |
397 } | |
398 breakflush: | |
399 | |
400 // Return pending log data. | |
401 if(p->nlog > 0) { | |
402 // Note that we're using toggle now, not wtoggle, | |
403 // because we're working on the log directly. | |
404 ret.array = (byte*)p->log[p->toggle]; | |
405 ret.len = p->nlog*sizeof(uintptr); | |
406 ret.cap = ret.len; | |
407 p->nlog = 0; | |
408 return ret; | |
409 } | |
410 | |
411 // Made it through the table without finding anything to log. | |
412 if(!p->eod_sent) { | |
413 // We may not have space to append this to the partial log buf, | |
414 // so we always return a new slice for the end-of-data marker. | |
415 p->eod_sent = true; | |
416 ret.array = (byte*)eod; | |
417 ret.len = sizeof eod; | |
418 ret.cap = ret.len; | |
419 return ret; | |
420 } | |
421 | |
422 // Finally done. Clean up and return nil. | |
423 p->flushing = false; | |
424 if(!runtime·cas(&p->handoff, p->handoff, 0)) | |
425 runtime·printf("runtime: profile flush racing with something\n")
; | |
426 return ret; // set to nil at top of function | |
427 } | |
428 | |
429 // CPUProfile returns the next cpu profile block as a []byte. | |
430 // The user documentation is in debug.go. | |
431 func CPUProfile() (ret Slice) { | |
432 ret = getprofile(prof); | |
433 } | |
OLD | NEW |