OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 The Go Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style |
| 3 // license that can be found in the LICENSE file. |
| 4 |
| 5 package vp8l |
| 6 |
| 7 import ( |
| 8 "io" |
| 9 ) |
| 10 |
| 11 // reverseBits reverses the bits in a byte. |
| 12 var reverseBits = [256]uint8{ |
| 13 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0,
0x30, 0xb0, 0x70, 0xf0, |
| 14 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8,
0x38, 0xb8, 0x78, 0xf8, |
| 15 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4,
0x34, 0xb4, 0x74, 0xf4, |
| 16 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc,
0x3c, 0xbc, 0x7c, 0xfc, |
| 17 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2,
0x32, 0xb2, 0x72, 0xf2, |
| 18 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda,
0x3a, 0xba, 0x7a, 0xfa, |
| 19 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6,
0x36, 0xb6, 0x76, 0xf6, |
| 20 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde,
0x3e, 0xbe, 0x7e, 0xfe, |
| 21 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1,
0x31, 0xb1, 0x71, 0xf1, |
| 22 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9,
0x39, 0xb9, 0x79, 0xf9, |
| 23 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5,
0x35, 0xb5, 0x75, 0xf5, |
| 24 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd,
0x3d, 0xbd, 0x7d, 0xfd, |
| 25 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3,
0x33, 0xb3, 0x73, 0xf3, |
| 26 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb,
0x3b, 0xbb, 0x7b, 0xfb, |
| 27 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7,
0x37, 0xb7, 0x77, 0xf7, |
| 28 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf,
0x3f, 0xbf, 0x7f, 0xff, |
| 29 } |
| 30 |
| 31 // hNode is a node in a Huffman tree. |
| 32 type hNode struct { |
| 33 // symbol is the symbol held by this node. |
| 34 symbol uint32 |
| 35 // children, if positive, is the hTree.nodes index of the first of |
| 36 // this node's two children. Zero means an uninitialized node, |
| 37 // and -1 means a leaf node. |
| 38 children int32 |
| 39 } |
| 40 |
| 41 const leafNode = -1 |
| 42 |
| 43 // lutSize is the log-2 size of an hTree's look-up table. |
| 44 const lutSize, lutMask = 7, 1<<7 - 1 |
| 45 |
| 46 // hTree is a Huffman tree. |
| 47 type hTree struct { |
| 48 // nodes are the nodes of the Huffman tree. During construction, |
| 49 // len(nodes) grows from 1 up to cap(nodes) by steps of two. |
| 50 // After construction, len(nodes) == cap(nodes), and both equal |
| 51 // 2*theNumberOfSymbols - 1. |
| 52 nodes []hNode |
| 53 // lut is a look-up table for walking the nodes. The x in lut[x] is |
| 54 // the next lutSize bits in the bit-stream. The low 8 bits of lut[x] |
| 55 // equals 1 plus the number of bits in the next code, or 0 if the |
| 56 // next code requires more than lutSize bits. The high 24 bits are: |
| 57 // - the symbol, if the code requires lutSize or fewer bits, or |
| 58 // - the hTree.nodes index to start the tree traversal from, if |
| 59 // the next code requires more than lutSize bits. |
| 60 lut [1 << lutSize]uint32 |
| 61 } |
| 62 |
| 63 // insert inserts into the hTree a symbol whose encoding is the least |
| 64 // significant codeLength bits of code. |
| 65 func (h *hTree) insert(symbol uint32, code uint32, codeLength uint32) error { |
| 66 if symbol > 0xffff || codeLength > 0xfe { |
| 67 return errInvalidHuffmanTree |
| 68 } |
| 69 baseCode := uint32(0) |
| 70 if codeLength > lutSize { |
| 71 baseCode = uint32(reverseBits[(code>>(codeLength-lutSize))&0xff]
) >> (8 - lutSize) |
| 72 } else { |
| 73 baseCode = uint32(reverseBits[code&0xff]) >> (8 - codeLength) |
| 74 for i := 0; i < 1<<(lutSize-codeLength); i++ { |
| 75 h.lut[baseCode|uint32(i)<<codeLength] = symbol<<8 | (cod
eLength + 1) |
| 76 } |
| 77 } |
| 78 |
| 79 n := uint32(0) |
| 80 for jump := lutSize; codeLength > 0; { |
| 81 codeLength-- |
| 82 if int(n) > len(h.nodes) { |
| 83 return errInvalidHuffmanTree |
| 84 } |
| 85 switch h.nodes[n].children { |
| 86 case leafNode: |
| 87 return errInvalidHuffmanTree |
| 88 case 0: |
| 89 if len(h.nodes) == cap(h.nodes) { |
| 90 return errInvalidHuffmanTree |
| 91 } |
| 92 // Create two empty child nodes. |
| 93 h.nodes[n].children = int32(len(h.nodes)) |
| 94 h.nodes = h.nodes[:len(h.nodes)+2] |
| 95 } |
| 96 n = uint32(h.nodes[n].children) + 1&(code>>codeLength) |
| 97 jump-- |
| 98 if jump == 0 && h.lut[baseCode] == 0 { |
| 99 h.lut[baseCode] = n << 8 |
| 100 } |
| 101 } |
| 102 |
| 103 switch h.nodes[n].children { |
| 104 case leafNode: |
| 105 // No-op. |
| 106 case 0: |
| 107 // Turn the uninitialized node into a leaf. |
| 108 h.nodes[n].children = leafNode |
| 109 default: |
| 110 return errInvalidHuffmanTree |
| 111 } |
| 112 h.nodes[n].symbol = symbol |
| 113 return nil |
| 114 } |
| 115 |
| 116 // codeLengthsToCodes returns the canonical Huffman codes implied by the |
| 117 // sequence of code lengths. |
| 118 func codeLengthsToCodes(codeLengths []uint32) ([]uint32, error) { |
| 119 maxCodeLength := uint32(0) |
| 120 for _, cl := range codeLengths { |
| 121 if maxCodeLength < cl { |
| 122 maxCodeLength = cl |
| 123 } |
| 124 } |
| 125 const maxAllowedCodeLength = 15 |
| 126 if len(codeLengths) == 0 || maxCodeLength > maxAllowedCodeLength { |
| 127 return nil, errInvalidHuffmanTree |
| 128 } |
| 129 histogram := [maxAllowedCodeLength + 1]uint32{} |
| 130 for _, cl := range codeLengths { |
| 131 histogram[cl]++ |
| 132 } |
| 133 currCode, nextCodes := uint32(0), [maxAllowedCodeLength + 1]uint32{} |
| 134 for cl := 1; cl < len(nextCodes); cl++ { |
| 135 currCode = (currCode + histogram[cl-1]) << 1 |
| 136 nextCodes[cl] = currCode |
| 137 } |
| 138 codes := make([]uint32, len(codeLengths)) |
| 139 for symbol, cl := range codeLengths { |
| 140 if cl > 0 { |
| 141 codes[symbol] = nextCodes[cl] |
| 142 nextCodes[cl]++ |
| 143 } |
| 144 } |
| 145 return codes, nil |
| 146 } |
| 147 |
| 148 // build builds a canonical Huffman tree from the given code lengths. |
| 149 func (h *hTree) build(codeLengths []uint32) error { |
| 150 // Calculate the number of symbols. |
| 151 var nSymbols, lastSymbol uint32 |
| 152 for symbol, cl := range codeLengths { |
| 153 if cl != 0 { |
| 154 nSymbols++ |
| 155 lastSymbol = uint32(symbol) |
| 156 } |
| 157 } |
| 158 if nSymbols == 0 { |
| 159 return errInvalidHuffmanTree |
| 160 } |
| 161 h.nodes = make([]hNode, 1, 2*nSymbols-1) |
| 162 // Handle the trivial case. |
| 163 if nSymbols == 1 { |
| 164 if len(codeLengths) <= int(lastSymbol) { |
| 165 return errInvalidHuffmanTree |
| 166 } |
| 167 return h.insert(lastSymbol, 0, 0) |
| 168 } |
| 169 // Handle the non-trivial case. |
| 170 codes, err := codeLengthsToCodes(codeLengths) |
| 171 if err != nil { |
| 172 return err |
| 173 } |
| 174 for symbol, cl := range codeLengths { |
| 175 if cl > 0 { |
| 176 if err := h.insert(uint32(symbol), codes[symbol], cl); e
rr != nil { |
| 177 return err |
| 178 } |
| 179 } |
| 180 } |
| 181 return nil |
| 182 } |
| 183 |
| 184 // buildSimple builds a Huffman tree with 1 or 2 symbols. |
| 185 func (h *hTree) buildSimple(nSymbols uint32, symbols [2]uint32, alphabetSize uin
t32) error { |
| 186 h.nodes = make([]hNode, 1, 2*nSymbols-1) |
| 187 for i := uint32(0); i < nSymbols; i++ { |
| 188 if symbols[i] >= alphabetSize { |
| 189 return errInvalidHuffmanTree |
| 190 } |
| 191 if err := h.insert(symbols[i], i, nSymbols-1); err != nil { |
| 192 return err |
| 193 } |
| 194 } |
| 195 return nil |
| 196 } |
| 197 |
| 198 // next returns the next Huffman-encoded symbol from the bit-stream d. |
| 199 func (h *hTree) next(d *decoder) (uint32, error) { |
| 200 var n uint32 |
| 201 // Read enough bits so that we can use the look-up table. |
| 202 if d.nBits < lutSize { |
| 203 c, err := d.r.ReadByte() |
| 204 if err != nil { |
| 205 if err == io.EOF { |
| 206 // There are no more bytes of data, but we may s
till be able |
| 207 // to read the next symbol out of the previously
read bits. |
| 208 goto slowPath |
| 209 } |
| 210 return 0, err |
| 211 } |
| 212 d.bits |= uint32(c) << d.nBits |
| 213 d.nBits += 8 |
| 214 } |
| 215 // Use the look-up table. |
| 216 n = h.lut[d.bits&lutMask] |
| 217 if b := n & 0xff; b != 0 { |
| 218 b-- |
| 219 d.bits >>= b |
| 220 d.nBits -= b |
| 221 return n >> 8, nil |
| 222 } |
| 223 n >>= 8 |
| 224 d.bits >>= lutSize |
| 225 d.nBits -= lutSize |
| 226 |
| 227 slowPath: |
| 228 for h.nodes[n].children != leafNode { |
| 229 if d.nBits == 0 { |
| 230 c, err := d.r.ReadByte() |
| 231 if err != nil { |
| 232 if err == io.EOF { |
| 233 err = io.ErrUnexpectedEOF |
| 234 } |
| 235 return 0, err |
| 236 } |
| 237 d.bits = uint32(c) |
| 238 d.nBits = 8 |
| 239 } |
| 240 n = uint32(h.nodes[n].children) + 1&d.bits |
| 241 d.bits >>= 1 |
| 242 d.nBits-- |
| 243 } |
| 244 return h.nodes[n].symbol, nil |
| 245 } |
OLD | NEW |